Dr. Bernhard Fruth – Maser & Quartzelec

Condition Monitoring of HV Partial Discharge
CONDITION MONITORING
OF ROTATING MACHINES

AEMT 2015
Quartzelec Group

A leading independent electrical engineering group with a UK and Overseas presence
What is LIFEVIEW?

- Trade Mark of Quartzteq
- Condition and Monitoring devices for electrical rotating machines
- Online Monitoring
 Permanent Monitoring
 Machine in operation
- Offline Monitoring
 Periodic Inspection
 Machine stopped
Rotating Plant – Core Competencies

Motors, Generators, Pumps, (Turbines)

Design & machines engineering
Repair, rewind & refurbishment
Installation & commissioning
Site service, ships, platforms
Major overhauls
Maintenance, long-term service agreements (LTSAs)
Diagnostics & life assessment testing
New equipment & spares supply
Excitation, AVR, Protection & Control
Bars, Coils, Components
Consulting, Owner’s Engineer
Full Life Cycle Support

- Normal Operational & Routine Inspections
- Diagnostics
- Major Repair & Refurbishments
Is your rotating plant in good health?

Wear and tear on your machine is inevitable – affected through electrical and mechanical stresses as well as the environment in which it operates.

How can you tell what is going on inside your machine?

When will your machine deliver substandard performance?

When will it fail?
Why Monitoring: **LIFEVIEW™**

Condition Based Maintenance
Maintenance on Demand
Monitoring vs. Periodic Testing

Quality

- Weak design
- Assembly errors
- Damaged components
- Poor joints/connections
- Dirt & contamination

Failure Rate

Stress

- Operating Stresses
- Poor maintenance
- Operator abuse
- Accidents

Wear

- Weak design
- Wear
- Insulation breakdown
- Fatigue
- Corrosion

Wear-in

Random

T₁

T₂

Wear-out

Time
Why LIFEVIEW™

provides continuous information for efficient and safe operation of power generators and motors, allowing you to:

• Take immediate remedial action
• Prevent catastrophic failure
• Plan for outage
• Minimise lost production
• Postpone expensive maintenance
• Plan for investment effectively
• Manage risk for warranty and insurance: predictability
• Enjoy pinpointed, condition based repair and maintenance.
Motor Failure Statistics

- Bearing // Coupling // Shaft: 63%
- Rotor Winding: 12%
- Stator Core: 12%
- Stator Winding: 12%
- Misc. Defects: 1%
Monitoring/Electrical System/Main Components

- Partial discharge, insulation condition monitoring
- Rotor (flux) monitoring and protection (winding faults, temperature etc.)
- Shaft voltages and currents (bearing protection, rotor faults).
- Air gap and magnetic pull monitoring (typically for multi-pole machines)
- Ozone and gas monitoring (overheating, discharge activity)
- Winding vibration (causing fretting and winding failure)
LIFEVIEW® TURBOGEN system

- LIFEVIEW® Cloud
- Control Room
- Shaft Voltage
- Flux Probe
- 3 Couplers/PD sensors
- Rotoguard
- LAN
LIFEVIEW® HYDRO system

LIFEVIEW® Cloud

3 Couplers/PD sensors → Terminal Box of Generator → Stator core

16 sensors QGAP

Control Room → LAN
Monitoring Devices

Generator System
Partial Discharge Measurement
Ozone Detection
Air Gap and Magnetic Flux
Monitoring
End winding Vibration
Magnetic Core Vibration
Generator Temperature
Bearing Vibration (absolute) upper side generator
Relative Shaft Vibration upper side generator
Bearing Vibration (absolute) lower side generator
Relative Shaft Vibration lower side generator

Turbine System
Axial Thrust Vibration, Oil Film and Movement
Turbine Headcover Vibration
Turbine Temperature
Relative Shaft Vibration upper side turbine
Bearing Vibration (absolute) upper side turbine
Wicket Gate Vibration
Runner or Labyrinth Gap Monitoring
Cavitation Monitoring
Online monitoring system

Hydro Generator

LEGEND

- Analog variable
- State variable
What is partial discharge?

Partial Discharge is a local breakdown phenomenon which short circuits a part of an insulation and leads to ageing and accompanies ageing!
Partial discharge takes place in defects of the insulation.

• formation ionised species
 – formation of corrosives, ions, acids, nitrogen oxides, ozone
 – light, sound and electromagnetic waves are emitted

• we use these effects for identification and localization of partial discharges (=insulation defects):
• antennae, chemical sensors, ultrasonic devices, cameras..
Analysis: partial discharge patterns

- E_{res}
- E_{max}
- E_0
- $E(t)$
- N/s
- Phase angle

Pattern:
- 2-D pattern: pd in a bubble
- 3-D pattern:

25 YEARS OF PRPDA: 1988 BBC, B. FRUTH
Statistical Effects/Physics

Amplitude Scatter: Statistical Effects
Asymmetry: Gas Discharge Physics

Delamination from Conductor
Detectability: Void vs. Delamination?

<table>
<thead>
<tr>
<th>Defect Type</th>
<th>Inception Voltage Ui</th>
<th>Apparent Charge @ Ui</th>
<th>Apparent Charge @ 2xUi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Void</td>
<td>30 kV</td>
<td>0.64pC</td>
<td>2.6pC</td>
</tr>
<tr>
<td>Delamination</td>
<td>10 kV</td>
<td>38pC</td>
<td>600pC</td>
</tr>
</tbody>
</table>

The letters A to G describe typical defects:

A: highest electrical field - usually pd - e.g. field calc.
 \(E = 20 \) to \(30 \) kV/mm
B: delamination: winding - main
 insulation, \(E = \varepsilon E_0 = 10 \) kV/mm
C: delamination of tape layers, E see C
D: treeing in layers, unknown, very high locally
E: broken strands
G: voids, \(E = 1.3x E_0 \)
F: slot discharge, semicon paint abrasion,
 E see C

H: Discharges in Cooling Duct, mainly created by vibration and abrasion of
 corona protection layers
I: Delamination of Insulation in elbow (especially when
 manually manufactured)
J: endwinding surface discharge (contamination etc.)
K: Insufficient spacing, tracking, especially between bars with big voltage
 difference, different phases
L: Connection area between slot corona protection and endwinding corona
 protection
M: Slot exit discharge (similar to H and F, pd between iron and eroded
 semiconducting coating)
N: PD between bar surface and core clamps
O: Bar to Bar discharge (see K)
P: Vibration Sparking, due to winding looseness and bar movement
Partial Discharge:

- monitors insulation damage
- pattern identifies defect type
- Quartzelec staff has field experience of more than 5000 successful diagnoses
- technology development based on field experience
Partial Discharge: End Winding

Damage by PD
Partial Discharge: Phase to Phase
The Electrical Field

Degraded Overlap Area:
Loss of Contact Between Endwinding and Slot Corona Protection
Example: Cleaning Efficiency > QA

Diagnosis:
Pollution

Measurable Success
Phase to Phase Fault Avoided

Discharge between U and V phase
Vertical line = impulse type EMI

Discharge between V and W phase

Noise floor
1: theoretical response of coupler (e.g. 80pF)
2: partial discharge signal spectrum
3: transmission of pulse from neutral to HV

- most of the signal energy is transferred in the sub 20MHz Band
- most of the winding covered using sub 20MHz band
- some PDA instrument and coupler together use a frequency range of 40 to 350 MHz
Signal Transfer: ITAIPU/700MVA

Signal Injection

Frequency Spectrum

IEC TS 60034-27
Attenuation Error of “Ultra High Bandwidth Method” and mV Units

mV: 10x attenuation over 1 slot of a turbine generator limit 350 MHz
pC: none, limit 10 MHz
PD Sensors
LIFEVIEW® PDA

LIFEVIEW® PDA an ideal partner for operators who do not want to be bothered by complex software:

- Data normalisation compliant to IEC 60270 & IEC TS 60034-27

- Pre-set warning thresholds and simple analogue (4-20mA, relays)

- Programmable filters for use in noisy environments

- Easy to understand data
Software displays graphical user interface for:

- Partial discharge pattern & discharges trend
- Various display options for crosstalk and phase to phase PD recognition
- Calculation of apparent change according to above IEC standards
- Instrument acquisition control panel
Software displays graphical user interface for:

- Partial discharge pattern & discharges trend
- Various display options for crosstalk and phase to phase PD recognition
- Calculation of apparent change according to above IEC standards
- Instrument acquisition control panel
LIFEVIEW® PDA

- 3 Couplers/PD sensors
- GSM Module
- 4 – 20 mA Relay
- Control Room
- LIFEVIEW® Cloud
LIFEVIEW® QTD Kit

HV Flashing Set

LIFEVIEW QTD: PD, TD
Off-Line PD and TanDelta
High Voltage VLF: PD, TANDELTA, DC Leakage

- Field Test Equipment made to measure by Quartzteq

- Weight Reduction & Greater Portability
LIFEVIEW® QLF kit
Highly Portable HV TESTS

PD Pattern

Graph showing test voltage (kV) vs. Tand(50Hz)% and other parameters.
Fig. 1: Correlation of the mechanical and electrical relaxations (mechanical measurements in dual cantilever mode at 1Hz oscillating force). Linear heating at 1 K/min.

Fig. 2: Temperature dependence of the dielectric constant of the epoxy resin (100 kHz, 1V/mm)
 (1: freshly cured, 2: 1 h at 300°C, 3: 16 h at 300°C, 4: 32 h at 300°C.)
Rotor Condition
Measured parameters: Shaft Voltage

Spectral analysis identifies fault
Measured parameters: Air Gap Flux
Head Winding Resonance
The sensor is mounted on the slot corona protection (the electrical field is 0, as it is grounded), the power supply is routed to the back. This is to measure the critical slot exit vibration.
Head Winding Resonance

Turbine Generators (PD and Vibration)
• universal intelligent wireless sensor system was designed to monitor vibration and temperature in critical locations
• not easily accessible
• installation of wiring may be difficult
• more than one interesting axis for monitoring
• have strong electromagnetic interference that would deteriorate wired signals.

All components and accessories of rotating machines are vibrating. Analysis of these vibrations can be vital in the early detection of defects.
Application Range

- Various atmospheres and environments (ex, humidity, due to hermetic encapsulations and high temperature design)
- Winding and core vibration (generators and motors)
- Classical mechanical vibrations in pumps, fans, gear boxes (alignment, bearing defects, unbalance etc.)
- Applications outside the „classical“ rotating machinery, as transformer bushings, conveyor belts etc..
Wireless Sensors

![Image of Wireless Sensors](image)

<table>
<thead>
<tr>
<th>Electrical and operational</th>
<th>Sensors: Acceleration</th>
<th>Sensors: Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power consumption: ≤ 80mW</td>
<td>Axes: 3 (x,y,z)</td>
<td>Sensitivity: ±1 °C</td>
</tr>
<tr>
<td>Power supply range: 4 to 36VDC</td>
<td>Range: +/-12 g</td>
<td></td>
</tr>
<tr>
<td>Operating temperature: -20 to 105 °C</td>
<td>Sensitivity: 3mg</td>
<td></td>
</tr>
<tr>
<td>Dimensions: 3.5 × 2.5 × 0.4 cm</td>
<td>Burst sample rate: 3.2KHz</td>
<td></td>
</tr>
<tr>
<td>Network: 2.4 GHz, 100m, more than 60000 nodes possible, 250kb/s</td>
<td>Resolution: 13 bit</td>
<td></td>
</tr>
</tbody>
</table>

Sensor features
Application Range

sensors can be powered up by different power supplies:

- battery pack (must be replaced every six month)
- Solar panel pack including battery
- wired DC power supply
- energy harvesting
LIFEVIEW® Connect

- Remote Access using 3G Network
- No connection to the customer Network (IT restriction)
- Full access from computers, laptop, tablet, smartphone
Application Pump Monitor

Control Room

QVibe Coordinator

- Computer
- Relay
- 4-20mA

LAN / WI-FI
Vibration Sources in Pumps (DIN Handbook)

- Vibrations as a consequence of imbalances
- Vibrations due to component, installation and impeller resonance
- Vibrations resulting from shaft bending of the driveline
- Vibrations from play in bearings and other components
- Vibrations resulting from the effect of imbalance in rotating liquid rings
- Vibration excitation due to the unbalanced inertial forces of crank drives and other oscillating masses
- Vibration excitation due to flow and pressure pulsation in oscillating and rotating positive-displacement pumps
- Excitation due to blading rotation noise and other pressure pulsations in centrifugal pumps
- Excitation due to cavitation in centrifugal pumps
- Excitation due to cavitation in positive-displacement pumps
- Excitation from flow cavitation in pump nozzles and connected pipes
- Excitation due to pressure surges with two or multiphase flow
- Excitation due to partial-load operation in centrifugal pumps
- Vibrations due to roller bearing damage in pumps
- Vibrations due to standstill vibrations in pumps fitted with roller bearings
- Vibrations due to plain bearing damage in pumps
- Vibrations due to dry running in process-fluid-lubricated plain bearings and face seals in pumps (frictional vibration excitation)
The whole system is controlled by a “GUI”, graphical user interface, which is accessible also from remote.

The vibration monitoring software is installed in the sensors and in the so-called network coordinators. Any PC or tablet can be used for visualising.

The software(s) can be configured for many applications and a virtually unlimited number of pumps, fans or sensors.
GUI Trending
GUI/Spectral Comparison
GUI/Level Monitor
GUI/Waveshape Analysis
Frequency Sensitive Alarm Setting

![Frequency Sensitive Alarm Setting](image)
Vibration Examples

Time Frequency Plot

Machine stop due to excess vibration, probably gearbox
Critical Values
PD identifies problems/aging processes

TEAM stresses of the insulation
- Thermal, temperature
- Electrical, electric field
- Ambiant (environment)
- Mechanical, vibrations

lead to:
- electrical discharges (PD) which in consequence are an indicator for such stresses
- these indicators are not the cause but the consequence of stresses (TEAM).
- diagnosis and monitoring analyses causes & effects of defects or aging.
AIRGAP MONITOR QGAP

Protects and Monitors
Generators
LIFEVIEW™ QGAP MONITOR

complete information regarding the condition of the magnetic circuits related to the air-gap:

• relative effective static and dynamic deformation of the stator magnetic circuit;
• magnitude and direction of static and dynamic eccentricities;
• magnitude and direction of magnetic pulls;
• air-gap magnetic flux.
QGAP SENSORS

simple and very low cost

Sensor set-up

Easy, minimal intrusion
no direct access to the air-gap necessary; no gluing;
No mechanical disassembling/reassembling;
fast with simple tools
easy to remove.
QGAP SENSORS

Innovative features of the system:

• low cost sensors
• insensitivity to external conditions (humidity, temperature, etc.)
• measurement of static and dynamic unbalanced magnetic pull;
• capability to recognize deformation of any shape;
• arbitrary number and disposition of sensors
• real-time assessment of air-gap condition
• no influence of the cables on the measurement
• no need of linearization.
monitoring equipment provides a numerical and graphical representation of:

the rotor magnetic circuit state
stator deformation
combination of these two states
harmonic analysis of the deformations.
Machine with 3 Defects (LAB)

1. Static eccentricity. 2. Third order deformation of the stator bore. 3. Pole n° 8 displaced.
 - wrong positioning of the rotor,
 - mechanical unbalance,
 - mechanical deformation of the stator,
 - partial short-circuit of the field coil, magnetic circuit defect
REAL WORLD MONITORING

- Nominal power: 25.75 MW
- Voltage: 9 kV
- Nominal current: 2'117 A
- Power factor: 0.8
- Speed: 136.4 rpm

Stator magnetic circuit
- Internal diameter Ø: 5'992 mm
- Total length: 1'371 mm
- Ventilation aperture: 10 mm
- Stacks: 60 mm
- Air-gap: 12 mm
Generator 1

- Slightly deformed stator bore
- Static eccentricity
- No dynamic eccentricity
Generator 1/16 sensors

- Slightly deformed stator bore
- Static eccentricity
- No dynamic eccentricity
- Unbalanced magnetic pull
Generator 2/16 sensors

- Slightly deformed stator bore
- No static eccentricity or dynamic eccentricity
- Low unbalanced magnetic pull
Generator 2/16 sensors

- Slightly deformed stator bore
- No static eccentricity or dynamic eccentricity
- Low unbalanced magnetic pull
DAQ Units
Diagnostic Pyramid

On-line watchdogs
No user knowledge required

Off-line inspection services
HV Testing, borescope, visual

On-line expert diagnostics:
Critical evaluation and advice

Advanced analytics
Consulting-maintenance
LIFEVIEW™ Structure

- Operating History
- Maintenance History
- Inspection Data
- Monitoring Data
- Operating Data
- Expert System
- Stochastic Models
- Data Mining
- Artificial Intelligence
- Pattern Recognition
- Machine Data
- Customer Data
- Document Storage

LIFEVIEW
- Field Service
- Monitoring System

Remote Diagnostic Support (RDS)
- Assessment Support Warnings

100% Client Information
- Mail
- Webserver
LIFEVIEW Cloud

- Ability to add unlimited new devices.
- Set up device information, customer details, emergency contacts and even photos in-situ for each installation.
- An easily understood colour coded alert system.
- Regular and ad-hoc reporting.
- An interactive map showing all installations, including those on alert, in test mode and requiring service.
Cloud Functionalities

Customer:

- Immediate access to his own machines
- Status Information: (green : ok, red : warning, black : no signal, orange : last inspection overdue,)
- Overview of all machines/powerplant from one location
- The LIFEVIEW device can be connected to an internet server, and the users can see the measurement by accessing this server (secure cloud)
- The device is not necessarily connected to a customer local network → no IT security problem. (possible to use GSM, 3G, or customer Network if authorised)
LIFEVIEW Cloud

Healthy machines
Warning
Connection Lost
Last Analysis > 6 months ago
GUI/Waveshape Analysis

Quartzteq Lifeview Cloud: Machine 1: Remote access

Further Possibilities:

- Simultaneous access of several users to the same machine (e.g. for discussion of results)
- Server storage of values, parameters, alarms, data (machine related raw data is stored locally in each LIFEVIEW monitoring unit, and accessible without CLOUD. It can be optionally mirrored on the server).
- Server (CLOUD) stores, reports, drawings, documents and other machine related data.